【Java 多线程并发】synchronized

Metadata

title: 【Java 多线程并发】synchronized
date: 2022-12-14 14:57
tags:
  - 行动阶段/完成
  - 主题场景/编程
  - 笔记空间/KnowladgeSpace/ProgramSpace
  - 细化主题/Java/多线程并发
categories:
  - Java
keywords:
  - Java/多线程并发
description: 多线程并发 Synchronized

【Java 多线程并发】synchronized

在Java中除了提供Lock API外还在语法层面上提供了synchronized关键字来实现互斥同步原语

在应用 Sychronized 关键字时需要把握如下注意点:

  • 一把锁只能同时被一个线程获取,没有获得锁的线程只能等待;
  • 每个实例都对应有自己的一把锁 (this), 不同实例之间互不影响;例外:锁对象是 *.class 以及 synchronized 修饰的是 static 方法的时候,所有对象公用同一把锁
  • synchronized 修饰的方法,无论方法正常执行完毕还是抛出异常,都会释放锁

对象锁

包括方法锁(默认锁对象为this,当前实例对象)和同步代码块锁(自己指定锁对象)

代码块形式:手动指定锁定对象,也可是是this,也可以是自定义的锁

public class SynchronizedObjectLock implements Runnable {
    static SynchronizedObjectLock instence = new SynchronizedObjectLock();

    @Override
    public void run() {
        // 同步代码块形式——锁为this,两个线程使用的锁是一样的,线程1必须要等到线程0释放了该锁后,才能执行
        synchronized (this) {
            System.out.println("我是线程" + Thread.currentThread().getName());
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + "结束");
        }
    }

    public static void main(String[] args) {
        Thread t1 = new Thread(instence);
        Thread t2 = new Thread(instence);
        t1.start();
        t2.start();
    }
}

方法锁形式:synchronized修饰普通方法,锁对象默认为this

public class SynchronizedObjectLock implements Runnable {
    static SynchronizedObjectLock instence = new SynchronizedObjectLock();

    @Override
    public void run() {
        method();
    }

    public synchronized void method() {
        System.out.println("我是线程" + Thread.currentThread().getName());
        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName() + "结束");
    }

    public static void main(String[] args) {
        Thread t1 = new Thread(instence);
        Thread t2 = new Thread(instence);
        t1.start();
        t2.start();
    }
}

类锁

指synchronize修饰静态的方法或指定锁对象为Class对象

synchronize修饰静态方法


public class SynchronizedObjectLock implements Runnable {
    static SynchronizedObjectLock instence1 = new SynchronizedObjectLock();
    static SynchronizedObjectLock instence2 = new SynchronizedObjectLock();

    @Override
    public void run() {
        method();
    }

    // synchronized用在普通方法上,默认的锁就是this,当前实例
    public synchronized void method() {
        System.out.println("我是线程" + Thread.currentThread().getName());
        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName() + "结束");
    }

    public static void main(String[] args) {
        // t1和t2对应的this是两个不同的实例,所以代码不会串行
        Thread t1 = new Thread(instence1);
        Thread t2 = new Thread(instence2);
        t1.start();
        t2.start();
    }
}

synchronized指定锁对象为Class对象

public class SynchronizedObjectLock implements Runnable {
    static SynchronizedObjectLock instence1 = new SynchronizedObjectLock();
    static SynchronizedObjectLock instence2 = new SynchronizedObjectLock();

    @Override
    public void run() {
        // 所有线程需要的锁都是同一把
        synchronized(SynchronizedObjectLock.class){
            System.out.println("我是线程" + Thread.currentThread().getName());
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + "结束");
        }
    }

    public static void main(String[] args) {
        Thread t1 = new Thread(instence1);
        Thread t2 = new Thread(instence2);
        t1.start();
        t2.start();
    }
}

Synchronized原理分析

加锁和释放锁的原理

可重入原理:加锁次数计数器

  • 什么是可重入?可重入锁?

可重入:(来源于维基百科)若一个程序或子程序可以“在任意时刻被中断然后操作系统调度执行另外一段代码,这段代码又调用了该子程序不会出错”,则称其为可重入(reentrant或re-entrant)的。即当该子程序正在运行时,执行线程可以再次进入并执行它,仍然获得符合设计时预期的结果。与多线程并发执行的线程安全不同,可重入强调对单个线程执行时重新进入同一个子程序仍然是安全的。

可重入锁: 又名递归锁,是指在同一个线程在外层方法获取锁的时候,再进入该线程的内层方法会自动获取锁(前提锁对象得是同一个对象或者class),不会因为之前已经获取过还没释放而阻塞。

保证可见性的原理:内存模型和happens-before规则

Synchronized的happens-before规则,即监视器锁规则:对同一个监视器的解锁,happens-before于对该监视器的加锁。

JVM 中锁的优化

简单来说在JVM中monitorenter和monitorexit字节码依赖于底层的操作系统的Mutex Lock来实现的,但是由于使用Mutex Lock需要将当前线程挂起并从用户态切换到内核态来执行,这种切换的代价是非常昂贵的;然而在现实中的大部分情况下,同步方法是运行在单线程环境(无锁竞争环境)如果每次都调用Mutex Lock那么将严重的影响程序的性能。不过在jdk1.6中对锁的实现引入了大量的优化,如锁粗化(Lock Coarsening)、锁消除(Lock Elimination)、轻量级锁(Lightweight Locking)、偏向锁(Biased Locking)、适应性自旋(Adaptive Spinning)等技术来减少锁操作的开销。

  • 锁粗化(Lock Coarsening): 也就是减少不必要的紧连在一起的unlock,lock操作,将多个连续的锁扩展成一个范围更大的锁。
  • 锁消除(Lock Elimination): 通过运行时JIT编译器的逃逸分析来消除一些没有在当前同步块以外被其他线程共享的数据的锁保护,通过逃逸分析也可以在线程本的Stack上进行对象空间的分配(同时还可以减少Heap上的垃圾收集开销)。
  • 轻量级锁(Lightweight Locking): 这种锁实现的背后基于这样一种假设,即在真实的情况下我们程序中的大部分同步代码一般都处于无锁竞争状态(即单线程执行环境),在无锁竞争的情况下完全可以避免调用操作系统层面的重量级互斥锁,取而代之的是在monitorenter和monitorexit中只需要依靠一条CAS原子指令就可以完成锁的获取及释放。当存在锁竞争的情况下,执行CAS指令失败的线程将调用操作系统互斥锁进入到阻塞状态,当锁被释放的时候被唤醒(具体处理步骤下面详细讨论)。
  • 偏向锁(Biased Locking): 是为了在无锁竞争的情况下避免在锁获取过程中执行不必要的CAS原子指令,因为CAS原子指令虽然相对于重量级锁来说开销比较小但还是存在非常可观的本地延迟。
  • 适应性自旋(Adaptive Spinning): 当线程在获取轻量级锁的过程中执行CAS操作失败时,在进入与monitor相关联的操作系统重量级锁(mutex semaphore)前会进入忙等待(Spinning)然后再次尝试,当尝试一定的次数后如果仍然没有成功则调用与该monitor关联的semaphore(即互斥锁)进入到阻塞状态。

锁的类型

锁膨胀方向: 无锁 → 偏向锁 → 轻量级锁 → 重量级锁 (此过程是不可逆的)

自旋锁

为了让线程等待,我们只需要让线程执行一个忙循环(自旋),这便是自旋锁由来的原因。

如果锁占用的时间非常的短,那么自旋锁的性能会非常的好,相反,其会带来更多的性能开销(因为在线程自旋时,始终会占用CPU的时间片,如果锁占用的时间太长,那么自旋的线程会白白消耗掉CPU资源)。

自适应自旋锁

自旋等待刚刚成功获取过锁,并且持有锁的线程正在运行中,那么 JVM 会认为该锁自旋获取到锁的可能性很大,会自动增加等待时间。比如增加到 100 此循环。相反,如果对于某个锁,自旋很少成功获取锁。那再以后要获取这个锁时将可能省略掉自旋过程,以避免浪费处理器资源。有了自适应自旋,JVM 对程序的锁的状态预测会越来越准确,JVM 也会越来越聪明。

锁消除

锁消除是指虚拟机即时编译器再运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行消除。锁消除的主要判定依据来源于逃逸分析的数据支持。
JVM 会判断再一段程序中的同步明显不会逃逸出去从而被其他线程访问到,那 JVM 就把它们当作栈上数据对待,认为这些数据是线程独有的,不需要加同步。此时就会进行锁消除。

锁粗化

尽可能的将同步块的作用范围限制到尽量小的范围 (只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变小。在存在锁同步竞争中,也可以使得等待锁的线程尽早的拿到锁)。

如果存在连串的一系列操作都对同一个对象反复加锁和解锁,甚至加锁操作时出现在循环体中的,那即使没有线程竞争,频繁的进行互斥同步操作也会导致不必要的性能操作。

轻量级锁

在对象头中 (Object Header) 存在两部分。第一部分用于存储对象自身的运行时数据,HashCodeGC Age锁标记位是否为偏向锁。等。一般为 32 位或者 64 位 (视操作系统位数定)。官方称之为Mark Word,它是实现轻量级锁和偏向锁的关键。 另外一部分存储的是指向方法区对象类型数据的指针 (Klass Point),如果对象是数组的话,还会有一个额外的部分用于存储数据的长度。

轻量级锁加锁

在线程执行同步块之前,JVM 会先在当前线程的栈帧中创建一个名为锁记录 (Lock Record) 的空间,用于存储锁对象目前的Mark Word的拷贝 (JVM 会将对象头中的Mark Word拷贝到锁记录中,官方称为Displaced Mark Ward) 这个时候线程堆栈与对象头的状态如图:

偏向锁

在大多实际环境下,锁不仅不存在多线程竞争,而且总是由同一个线程多次获取,那么在同一个线程反复获取所释放锁中,其中并还没有锁的竞争,那么这样看上去,多次的获取锁和释放锁带来了很多不必要的性能开销和上下文切换。

只需要简单的测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。如果成功,表示线程已经获取到了锁。

偏向锁的撤销

偏向锁使用了一种等待竞争出现才会释放锁的机制。所以当其他线程尝试获取偏向锁时,持有偏向锁的线程才会释放锁。但是偏向锁的撤销需要等到全局安全点 (就是当前线程没有正在执行的字节码)。它会首先暂停拥有偏向锁的线程,让你后检查持有偏向锁的线程是否活着。如果线程不处于活动状态,直接将对象头设置为无锁状态。如果线程活着,JVM 会遍历栈帧中的锁记录,栈帧中的锁记录和对象头要么偏向于其他线程,要么恢复到无锁状态或者标记对象不适合作为偏向锁。

锁的优缺点对比

优点 缺点 使用场景
偏向锁 加锁和解锁不需要 CAS 操作,没有额外的性能消耗,和执行非同步方法相比仅存在纳秒级的差距 如果线程间存在锁竞争,会带来额外的锁撤销的消耗 适用于只有一个线程访问同步块的场景
轻量级锁 竞争的线程不会阻塞,提高了响应速度 如线程成始终得不到锁竞争的线程,使用自旋会消耗 CPU 性能 追求响应时间,同步块执行速度非常快
重量级锁 线程竞争不适用自旋,不会消耗 CPU 线程阻塞,响应时间缓慢,在多线程下,频繁的获取释放锁,会带来巨大的性能消耗 追求吞吐量,同步块执行速度较长

Synchronized 与 Lock

synchronized 的缺陷

  • 效率低:锁的释放情况少,只有代码执行完毕或者异常结束才会释放锁;试图获取锁的时候不能设定超时,不能中断一个正在使用锁的线程,相对而言,Lock 可以中断和设置超时
  • 不够灵活:加锁和释放的时机单一,每个锁仅有一个单一的条件 (某个对象),相对而言,读写锁更加灵活
  • 无法知道是否成功获得锁,相对而言,Lock 可以拿到状态,如果成功获取锁,….,如果获取失败,…..

Lock 解决相应问题

Lock 类这里不做过多解释,主要看里面的 4 个方法:

  • lock(): 加锁
  • unlock(): 解锁
  • tryLock(): 尝试获取锁,返回一个 boolean 值
  • tryLock(long,TimeUtil): 尝试获取锁,可以设置超时

Synchronized 只有锁只与一个条件 (是否获取锁) 相关联,不灵活,后来Condition与Lock的结合解决了这个问题。

深入

synchronized 是通过软件 (JVM) 实现的,简单易用,即使在 JDK5 之后有了 Lock,仍然被广泛的使用。

使用 Synchronized 有哪些要注意的?

  • 锁对象不能为空,因为锁的信息都保存在对象头里
  • 作用域不宜过大,影响程序执行的速度,控制范围过大,编写代码也容易出错
  • 避免死锁
  • 在能选择的情况下,既不要用 Lock 也不要用 synchronized 关键字,用 java.util.concurrent 包中的各种各样的类,如果不用该包下的类,在满足业务的情况下,可以使用 synchronized 关键,因为代码量少,避免出错

synchronized 是公平锁吗?

synchronized 实际上是非公平的,新来的线程有可能立即获得监视器,而在等待区中等候已久的线程可能再次等待,这样有利于提高性能,但是也可能会导致饥饿现象。